## Application Note · PlasmaQuant 9100 Elite



## Challenge

Determination of trace elemental impurities in pharmaceutical substances and products.

## Solution

High-Resolution ICP-OES with exceptionally high sensitivity, an industry leading highresolution optical system and a wide working range for the determination of elemental impurities in pharmaceuticals.

# Determination of Elemental Impurities in Pharmaceuticals by HR-ICP-OES according to ICH Q3D and USP 232 and 233

## Introduction

As of January 2018, pharmaceutical products must comply with specified limits for the allowed exposure to certain trace elemental impurities. The maximum permitted exposure limits and the analytical methods in order to quantify the listed trace elemental impurities are described in the United States Pharmacopeia (USP) chapters <232> Elemental Impurities – Limits<sup>[1]</sup> and <233> Elemental Impurities - Procedures<sup>[2]</sup> and are aligned with the International Conference on Harmonization (ICH) Q3D Step 4 guidelines<sup>[3]</sup>.

As discussed below, ICP technology is now a compendial method for the quantification of trace elemental impurities and is becoming the routine method of choice for manufacturers and suppliers of pharmaceutical products, including raw materials, drug substances and excipients. Challenges within this field of application include a large variety of sample types with diverse analyte combinations and target limits. This, in turn, requires ICP instrumentation that can handle a large variety of sample types with varying matrix loading and solvent types (e.g., aqueous or solvent based) and offers the measurement of a wide concentration range. In this regard, the plasma system needs to be able to handle any sample type without compromises in plasma stability and robustness. The accurate and reliable quantification of trace elemental impurities also requires a high sensitivity of the system, as well as the ability to resolve spectral interferences that are common in ICP-OES.



Within this study, the PlasmaQuant 9100 Elite high-resolution ICP-OES is used in order to determine elemental impurities in pharmaceutical products containing folic acid as the active pharmaceutical ingredient (API). Folic acid is used as the API in tablets as well as in liquid pharmaceutical products, which are administered orally or via injection (parenteral).

As will be shown below, the exceptionally high spectral resolution and sensitivity of the PlasmaQuant 9100 Elite offers new analytical potential. It allows for an interference-free analysis of trace elements in any matrix and any elemental constellation. Furthermore, the high plasma robustness of the High-Frequency Generator and the sample introduction system with its centerpiece, the V-Shuttle torch, allow for the analysis of pharmaceutical products with excellent accuracy and precision. The DualView Plus feature additionally offers the measurement of a wide concentration range within a single measurement. This often avoids the need for measuring several dilution samples in order to collect data for elements in both the low µg/l and the high mg/l range, providing savings in expenditure and time.

### Overview of the USP chapters <232>, <233> and ICH Q3D

#### Chapter <232> Elemental Impurities – Limits and ICH Q3D

Chapter <232> and ICH Q3D specify maximum limits for the amount of elemental impurities permitted in drug products, which we defined to be the final form of the medicine which the patient takes. The elemental impurities may be present in either the drug substances, the active ingredients and/or excipients. These impurities may be present naturally, derived from the production catalysts or introduced inadvertently throughout the manufacturing process. They could also be environmental contaminants in the pharmaceutical raw materials.

Compliance with the specified limits is required for all drug products, with the exceptions as listed in Chapter <232>. If elemental impurities are known to be present, have been added intentionally, or there is a known potential for introduction, it must be shown that compliance with defined limits is assured. Otherwise, a risk-based control strategy may also be considered.

Table 1 shows a total of 24 elemental impurities and the maximum permitted daily exposure (PDE) level in micrograms per day for oral, parenteral and inhalation drug delivery, as listed in Chapter <232>.

#### Element Classification

The Elemental Impurities chapters classify the elements into three groups. The first group, or Class 1 elements, consist of the toxic elements arsenic, cadmium, lead and mercury. These elements must always be considered in the risk assessment, and should always be measured. Class 2 elements are divided into two subgroups. Subclass 2A elements must also be included in all assessments, due to their ubiquity and relative toxicity. Subclass 2B elements need be considered in the risk assessment only if they are known to be present or are intentionally added during the manufacturing process of the final pharmaceutical product. Class 3 elemental impurities have relatively low toxicity by oral administration, but require assessment if delivered through the parenteral or inhalational routes.

Table 1: Permitted Daily Exposures (PDE) for Elemental Impurities as provided in USP Chapter <232> [1]

| Element | Class | Oral PDE<br>[µg/day] | Parenteral PDE<br>[µg/day] | Inhalation PDE<br>[µg/day] |
|---------|-------|----------------------|----------------------------|----------------------------|
| Cd      | 1     | 5                    | 2                          | 2                          |
| Pb      | 1     | 5                    | 5                          | 5                          |
| As      | 1     | 15                   | 15                         | 2                          |
| Hg      | 1     | 30                   | 3                          | 1                          |
| Со      | 2A    | 50                   | 5                          | 3                          |
| V       | 2A    | 100                  | 10                         | 1                          |
| Ni      | 2A    | 200                  | 20                         | 5                          |
| TI      | 2В    | 8                    | 8                          | 8                          |
| Au      | 2В    | 100                  | 100                        | 1                          |
| Pd      | 2В    | 100                  | 10                         | 1                          |

| Element | Class | Oral PDE<br>[µg/day] | Parenteral PDE<br>[µg/day] | Inhalation PDE<br>[µg/day] |
|---------|-------|----------------------|----------------------------|----------------------------|
| lr      | 2B    | 100                  | 10                         | 1                          |
| Os      | 2B    | 100                  | 10                         | 1                          |
| Rh      | 2B    | 100                  | 10                         | 1                          |
| Ru      | 2B    | 100                  | 10                         | 1                          |
| Se      | 2B    | 150                  | 80                         | 130                        |
| Ag      | 2B    | 150                  | 10                         | 7                          |
| Pt      | 2B    | 100                  | 10                         | 1                          |
| Li      | 3     | 550                  | 250                        | 25                         |
| Sb      | 3     | 1200                 | 90                         | 20                         |
| Ва      | 3     | 1400                 | 700                        | 300                        |
| Мо      | 3     | 3000                 | 1500                       | 10                         |
| Cu      | 3     | 3000                 | 300                        | 30                         |
| Sn      | 3     | 6000                 | 600                        | 60                         |
| Cr      | 3     | 11000                | 1100                       | 3                          |

### Chapter <233> Elemental Impurities – Procedures

Chapter <233> describes two analytical procedures, including sample preparation procedures, instrumental methods, and validation studies and requirements for measuring elemental impurities. The two compendial procedures are the inductively-coupled plasma-based spectrochemical techniques, ICP-OES and ICP-MS.

The criteria for acceptable alternative procedures (*i.e.* trace-element techniques such as Flame Atomic Absorption or Graphite Furnace Atomic Absorption) are also included. Alternative procedures must meet the described validation requirements in order to be used.

It must be emphasized that in addition to the system suitability requirements for the compendial ICP-OES and ICP-MS methods, before any procedure (including compendial) is initially used, the overall analytical procedure including sample preparation (if not otherwise indicated in the monograph) should be confirmed to be appropriate, for both the instrument being used and the samples being analyzed. This is done by meeting the requirements for alternate procedure validation, as described in Chapter <233>.

## Method Validation

Meeting the requirements for the alternate procedure validation, as described in Chapter <233>, is critical as all aspects of the analytical procedures including the instrumental technique and sample preparation process must be validated and shown to be acceptable. As defined in Chapter <233>, the validation parameters for acceptability of the alternative procedure depend on whether the procedure is a "Limit Procedure" or a "Quantitative Procedure".

Since the ICP-OES procedure is a "Quantitative Procedure" the requirements for the following validation parameters must be met: accuracy, precision (repeatability and ruggedness), specificity and limit of quantitation, range and linearity (demonstrated by meeting the accuracy requirement). Meeting the performance requirements defined in these tests must be demonstrated experimentally using an appropriate system suitability procedure and reference material. The suitability of the method is determined by conducting studies with the material under test, supplemented or spiked with known concentrations of each target element of interest at the appropriate acceptance limit concentration.

### **Materials and Methods**

#### Samples and reagents

The API tested in this study is folic acid. It can be administered orally in the form of tablets or via injection (parenteral) in liquid form. Due to the different possible routes of administration and different formulation processes, multiple classes (as described above) of elemental impurities should be analyzed in folic acid products. For this reason, this study includes all 24 elements specified within the USP and ICH guidelines as well as a full validation of the applied methodology. For single products, only a subsection of these elements may be of interest, e.g., Class 1 and 2A elements for oral drugs.

According to the USP <233> recommendation on the use of "strong acids" for digestion of insoluble samples, the preferred approach is closed vessel microwave digestion. For the microwave digestion 0.5 g of the folic acid drug product was accurately weighed and transferred into a digestion vessel (CX 100). The sample was spiked with 7 mL of conc. nitric acid. The mixture was then shaken carefully and left standing for 10 minutes before the vessel was closed. Subsequent digestion was performed in the TOPwave microwave by Analytik Jena with the following program:

Table 2: Digestion program for folic acid pharmaceutical product

| Step | T [°C] | p <sub>max</sub> [bar] | Ramp time [min] | Hold time [min] |
|------|--------|------------------------|-----------------|-----------------|
| 1    | 160    | 80                     | 5               | 10              |
| 2    | 190    | 80                     | 5               | 10              |
| 3    | 210    | 80                     | 5               | 20              |
| 4    | 50     | 80                     | -               | 20              |

After complete digestion and cooling to room temperature, the clear solution was filled up to 100 mL with deionized water. For the measurement of gold, iridium, osmium, palladium, platinum, rhodium and ruthenium 5% (v/v) conc. hydrochloric acid was added to the diluted sample, for stabilization of these elements in solution. Spiked samples were prepared by adding element concentrations according to USP <232> and <233> (Table 3) using concentration-balanced multi-element standards (Sigma Aldrich, Elemental Impurities according to ICH Q3D oral Standard 1–3). Matrix-matched (7% (v/v) conc. nitric acid, optional 5% (v/v) conc. hydrochloric acid) calibration standards were prepared from concentration-balanced multi-element standards (Sigma Aldrich, Element standards (Sigma Aldrich, Element standards (Sigma Aldrich, Element standards usere prepared from concentration-balanced multi-element standards (Sigma Aldrich, Element standards 1–3). The resulting concentrations are shown in Table 3.

### Target limit (J-Value)

In order to assess the suitability of the technique for the analytical task, it is important to know the PDE limit for each target element, and in particular what the USP calls the J-value. The J-value is defined as the PDE concentration of the element of interest, appropriately diluted to the working range of the instrument after completion of the sample preparation procedure.

As an example, the PDE limit for cadmium in an oral medication as defined in Chapter <232> is 5  $\mu$ g/day (see Table 1). If the maximum dosage of the final drug product is 1 g per day this is equivalent to 5  $\mu$ g of cadmium / 1 g of drug product. If 0.5 g of the drug product is digested or dissolved (sample preparation above) and made up to 100 mL, (200-fold dilution), the J-value for cadmium in this example is equal to 25  $\mu$ g/L (see Table 3).

The method then recommends using a calibration made up of two standards: standard 1 = 0.5 J, standard 2 = 1.5 J. For cadmium, this is equivalent to  $12.5 \mu g/L$  for standard 1 and to  $37.5 \mu g/L$  for standard 2. The calibration ranges for all elements are displayed in Table 3 in accordance to the J-value calculated for each element.

In the Results and Discussion section (see page 12) the calculated J-values (in Table 3) are compared with the Limits of Quantification (LOQ). The LOQ values should be well below the target limits of each target element. Should this not be the case, it may be necessary to use an alternative sample preparation procedure (*i.e.* different starting mass of sample for dilution, different dilution factor, etc.) or a different analysis technique, such as ICP-MS.

| Element | Concentration Li-<br>mits for Oral Drug | 0.5 J  | 0.8J   | 1.0 J  | 1.5 J  |
|---------|-----------------------------------------|--------|--------|--------|--------|
|         | Dose of ≤ 1 g/day<br>[µg/g]             | [µɡ/ב] | [µɡ/ב] | [µɡ/ב] | [µg/∟] |
| As      | 15                                      | 37.5   | 60     | 75     | 112.5  |
| Cd      | 5                                       | 12.5   | 20     | 25     | 37.5   |
| Hg      | 30                                      | 75     | 120    | 150    | 225    |
| Pb      | 5                                       | 12.5   | 20     | 25     | 37.5   |
| Со      | 50                                      | 125    | 200    | 250    | 375    |
| Ni      | 200                                     | 500    | 800    | 1000   | 1500   |
| V       | 100                                     | 250    | 400    | 500    | 750    |
| Ag      | 150                                     | 375    | 600    | 750    | 1125   |
| Au      | 100                                     | 250    | 400    | 500    | 750    |
| lr      | 100                                     | 250    | 400    | 500    | 750    |
| Os      | 100                                     | 250    | 400    | 500    | 750    |
| Pd      | 100                                     | 250    | 400    | 500    | 750    |
| Pt      | 100                                     | 250    | 400    | 500    | 750    |
| Rh      | 100                                     | 250    | 400    | 500    | 750    |
| Ru      | 100                                     | 250    | 400    | 500    | 750    |
| Se      | 150                                     | 375    | 600    | 750    | 1125   |
| TI      | 8                                       | 20     | 32     | 40     | 60     |
| Ва      | 1400                                    | 3500   | 5600   | 7000   | 10500  |
| Cr      | 11000                                   | 27500  | 44000  | 55000  | 82500  |
| Cu      | 3000                                    | 7500   | 12000  | 15000  | 22500  |
| Li      | 550                                     | 1375   | 2200   | 2750   | 4125   |
| Mo      | 3000                                    | 7500   | 12000  | 15000  | 22500  |
| Sb      | 1200                                    | 3000   | 4800   | 6000   | 9000   |
| Sn      | 6000                                    | 15000  | 24000  | 30000  | 45000  |

Table 3: J-Values in accordance to oral PDE with a maximum daily dose of  $\leq 1$  g/day and the method calibration standards

#### Instrumentation

## Instrument settings

For the analysis a PlasmaQuant 9100 Elite ICP-OES equipped with a standard sample introduction kit was used in combination with a Teledyne Cetac ASX 560 autosampler incl. ENC-560DC enclosure. The detailed system configuration is shown in Table 4.

Table 4: Configuration of the PlasmaQuant 9100 Elite equipped with standard kit

| Parameter             | Specification                              |  |  |  |  |  |
|-----------------------|--------------------------------------------|--|--|--|--|--|
| Plasma power          | 1200 W                                     |  |  |  |  |  |
| Plasma gas flow       | 12.0 L/min                                 |  |  |  |  |  |
| Auxiliary gas flow    | 0.5 L/min                                  |  |  |  |  |  |
| Nebulizer gas flow    | 0.6 L/min                                  |  |  |  |  |  |
| Nebulizer             | Concentric, 1.0 mL/min, Borosilicate       |  |  |  |  |  |
| Spray chamber         | Cyclonic spray chamber,50 mL, Borosilicate |  |  |  |  |  |
| Outer tube/Inner tube | Quartz/quartz                              |  |  |  |  |  |
| Injector              | Quartz, ID: 2mm                            |  |  |  |  |  |
| Pump tubing           | PVC (black, black)                         |  |  |  |  |  |
| Sample pump rate      | 1.0 mL/min                                 |  |  |  |  |  |
| Sample uptake time    | 55 s                                       |  |  |  |  |  |

### Method parameters

Table 5: Overview of method-specific evaluation parameters

| Element | Line    | Plasma view | Integration | Read time |              | Evalu                         | uation        |            |
|---------|---------|-------------|-------------|-----------|--------------|-------------------------------|---------------|------------|
|         | [nm]    |             | mode        | [s]       | No. of pixel | Baseline fit,<br>No. of pixel | Polyn. degree | Correction |
| As      | 188.979 | axial       | peak        | 10        | 3            | ABC1                          | auto          | -          |
| Cd      | 214.441 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Нд      | 184.886 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Pb      | 220.353 | axial       | peak        | 10        | 3            | ABC                           | auto          | -          |
| Со      | 237.863 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Ni      | 231.604 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| V       | 292.464 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Ag      | 328.068 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Au      | 242.795 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| lr      | 212.681 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Os      | 442.047 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Pd      | 340.458 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Pt      | 214.424 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |
| Rh      | 369.236 | axial       | peak        | 3         | 3            | ABC                           | auto          | -          |

| Element | Line    | Plasma view | Integration | Read ime | Evaluation   |                               |               |            |  |  |
|---------|---------|-------------|-------------|----------|--------------|-------------------------------|---------------|------------|--|--|
|         | [nm]    |             | mode        | [s]      | No. of pixel | Baseline Fit,<br>No. of pixel | Polyn. degree | Correction |  |  |
| Ru      | 240.272 | axial       | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| Se      | 196.028 | axial       | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| TI      | 190.796 | axial       | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| Ва      | 455.403 | radial plus | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| Cr      | 205.552 | radial plus | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| Cu      | 324.754 | radial      | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| Li      | 670.791 | radial plus | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| Mo      | 202.030 | radial      | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| Sb      | 217.581 | axial       | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |
| Sn      | 189.927 | radial      | peak        | 3        | 3            | ABC                           | auto          | -          |  |  |

<sup>1</sup> automatic baseline fit

#### **Results and Discussion**

In order to demonstrate that the ICP-OES procedure, including sample preparation, as described above is appropriate for the samples being analyzed, the following measurements, tests and validations must be performed, as per USP <233>:

- Calibration and system suitability
- Method validation
  - Accuracy
  - Precision (repeatability and ruggedness)
  - Specificity
  - Limits of quantitation and sensitivity
  - Range and linearity (demonstrated by meeting the accuracy requirement)

#### Calibration and system suitability

USP <233> recommends using a calibration made up of two standards: standard 1 = 0.5 J, standard 2 = 1.5 J. The calibration ranges for all elements are shown in Table 3 in accordance to the J-value calculated for each element. Representative calibration functions of all Class 1 elements are displayed in Figure 1.



Figure 1: Exemplary calibration curves (black) and confidence levels (green) for Class 1 Elemental Impurities

The system suitability test described in USP <233> requires a QC check standard with the concentration of 1.0 J to be measured before and after a batch of samples. The acceptance criteria defined in USP <232> for this test is a deviation of less than 20% for each target element.

| Element | Standard 1 at start of sequence [µg/L] | Standard 1 at end of sequence [µg/L] | RSD [%] |
|---------|----------------------------------------|--------------------------------------|---------|
| As      | 112.8                                  | 110.1                                | 2.5     |
| Cd      | 38.21                                  | 36.29                                | 5.3     |
| Нд      | 224.2                                  | 217.6                                | 3.0     |
| Pb      | 37.62                                  | 35.88                                | 4.8     |
| Со      | 377                                    | 359.4                                | 4.9     |
| Ni      | 1530                                   | 1439                                 | 6.3     |
| V       | 764.4                                  | 723.2                                | 5.7     |
| Ag      | 1129                                   | 1039                                 | 8.7     |
| Au      | 764.9                                  | 719                                  | 6.4     |
| lr      | 762.2                                  | 714.6                                | 6.7     |
| Os      | 736.9                                  | 754.8                                | 2.4     |
| Pd      | 758.8                                  | 711.7                                | 6.6     |
| Pt      | 762.6                                  | 710.3                                | 7.4     |
| Rh      | 754.4                                  | 735.1                                | 2.6     |
| Ru      | 759.6                                  | 711.4                                | 6.8     |
| Se      | 1151                                   | 1067                                 | 7.9     |
| TI      | 60.84                                  | 57.26                                | 6.3     |
| Ba      | 10660                                  | 10640                                | 0.2     |
| Cr      | 81930                                  | 81130                                | 1.0     |
| Cu      | 22730                                  | 22810                                | 0.4     |
| Li      | 4165                                   | 4142                                 | 0.6     |
| Mo      | 22770                                  | 22840                                | 0.3     |
| Sb      | 9087                                   | 8926                                 | 1.8     |
| Sn      | 44610                                  | 44410                                | 0.5     |

Table 6: Results of System Suitability Test

The obtained RSD values are well within the required 20% (Table 6). Within this study a batch of samples covering a full working day of 8 hours was measured in-between the QC check standards.

#### Method validation

Spike recoveries – Accuracy

In accordance to USP <233> guidelines, the accuracy of the method can be assessed by spike recoveries. Figure 2 shows averaged spike recoveries for all samples prepared in triplicate at the levels 0.5 J, 1.0 J and 1.5 J.

The acceptance criteria defined in USP <232> for this kind of test are recoveries between 70 and 150%. Figure 2 clearly shows that these criteria are easily met using the PlasmaQuant 9100 Elite, with average recoveries ranging from 87% to 105%.



Figure 2: Spike recovery results for 0.5 J, 1.0 J and 1.5 J  $\,$ 

#### Precision (Repeatability)

In terms of repeatability, six independent aliquots of each sample were spiked with concentration 1.0 J. Table 7 shows the repeatability for folic acid. The excellent repeatability achieved with RSD well below 2% from six independent preparations, illustrates the robustness and reliability of the method being well below the acceptance criteria of 20%.

| Element | Spike 1 | Spike 2 | Spike 3 | Spike 4 | Spike 5 | Spike 6 | RSD / % |
|---------|---------|---------|---------|---------|---------|---------|---------|
| As      | 82.3    | 82.7    | 82.3    | 82.4    | 84.2    | 82.0    | 1.0     |
| Cd      | 27.7    | 27.6    | 27.2    | 27.3    | 27.7    | 27.5    | 0.7     |
| Нд      | 162.1   | 160.6   | 161.6   | 161.4   | 161.2   | 159.9   | 0.5     |
| Pb      | 26.0    | 26.1    | 26.2    | 26.0    | 26.1    | 26.1    | 0.3     |
| Со      | 264.0   | 263.6   | 263.4   | 265.2   | 264.8   | 267.4   | 0.6     |
| Ni      | 1093    | 1072    | 1065    | 1067    | 1061    | 1077    | 1.1     |
| V       | 535.2   | 533.4   | 534.6   | 535.3   | 536.0   | 537.3   | 0.2     |
| Ag      | 654.1   | 747.4   | 699.4   | 735.0   | 790.3   | 733.9   | 6.3     |
| Au      | 557.3   | 553.9   | 554.9   | 545.8   | 563.6   | 557.9   | 1.1     |
| lr      | 523.3   | 522.9   | 533.4   | 526.4   | 539.6   | 530.2   | 1.2     |
| Os      | 428.0   | 419.7   | 422.2   | 425.5   | 431.5   | 423.9   | 1.0     |
| Pd      | 535.4   | 525.2   | 529.0   | 518.5   | 528.4   | 528.0   | 1.0     |
| Pt      | 529.2   | 532.1   | 528.0   | 528.8   | 536.6   | 530.5   | 0.6     |
| Rh      | 536.3   | 533.6   | 536.2   | 528.5   | 539.3   | 541.9   | 0.9     |
| Ru      | 535.5   | 542.1   | 528.1   | 529.7   | 544.8   | 535.0   | 1.2     |
| Se      | 844.2   | 854.0   | 850.1   | 839.4   | 847.9   | 851.3   | 0.6     |
| TI      | 42.0    | 42.0    | 41.6    | 41.1    | 42.7    | 42.5    | 1.3     |

Table 7: Results of repeatability test

| Element | Spike 1 | Spike 2 | Spike 3 | Spike 4 | Spike 5 | Spike 6 | RSD / % |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Ва      | 7393    | 7513    | 7354    | 7310    | 7347    | 7366    | 1.0     |
| Cr      | 57530   | 58330   | 56770   | 56180   | 55890   | 55940   | 1.7     |
| Cu      | 15680   | 15960   | 15550   | 15400   | 15530   | 15450   | 1.3     |
| Li      | 2869    | 2897    | 2834    | 2788    | 2794    | 2821    | 1.5     |
| Mo      | 15950   | 16120   | 15820   | 15620   | 15640   | 15350   | 1.7     |
| Sb      | 6206    | 6351    | 6132    | 6202    | 6157    | 6185    | 1.2     |
| Sn      | 31170   | 31350   | 30410   | 30160   | 30150   | 30100   | 1.8     |

## Intermediate precision (Ruggedness)

The results of 12 repeat analyses for each sample from six independent aliquots spiked with target value 1.0 J, were analyzed over two non-consecutive days with a different operator, new calibration and re-optimization of the instrument. The results for the folic acid samples over the two working days are shown in Table 8.

Table 8: Results of ruggedness test

| Ele-<br>ment | Spike<br>1a | Spike<br>2a | Spike<br>3a | Spike<br>4a | Spike<br>5a | Spike<br>6a | Spike<br>1b | Spike<br>2b | Spike<br>3b | Spike<br>4b | Spike<br>5b | Spike<br>6b | RSD /<br>% |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|
| As           | 82.3        | 82.7        | 82.3        | 82.4        | 84.2        | 82.0        | 84.3        | 83.5        | 83.6        | 84.2        | 82.5        | 83.1        | 1.0        |
| Cd           | 27.7        | 27.6        | 27.2        | 27.3        | 27.7        | 27.5        | 27.6        | 27.6        | 27.6        | 26.7        | 26.5        | 26.6        | 1.6        |
| Hg           | 162.1       | 160.6       | 161.6       | 161.4       | 161.2       | 159.9       | 157.3       | 156.3       | 159.1       | 151.4       | 157.0       | 154.5       | 2.1        |
| Pb           | 26.0        | 26.1        | 26.2        | 26.0        | 26.1        | 26.1        | 25.2        | 25.1        | 25.5        | 25.1        | 24.5        | 24.3        | 2.6        |
| Со           | 264.0       | 263.6       | 263.4       | 265.2       | 264.8       | 267.4       | 265.7       | 264.7       | 267.5       | 270.3       | 261.1       | 258.4       | 1.2        |
| Ni           | 1093        | 1072        | 1065        | 1067        | 1061        | 1077        | 1084        | 1060        | 1081        | 1072        | 1051        | 1021        | 1.7        |
| V            | 535.2       | 533.4       | 534.6       | 535.3       | 536.0       | 537.3       | 521.8       | 527.5       | 526.9       | 523.4       | 517.7       | 508.8       | 1.7        |
| Ag           | 654.1       | 747.4       | 699.4       | 735.0       | 790.3       | 733.9       | 906.1       | 975.4       | 923.7       | 963.7       | 858.4       | 912.2       | 13         |
| Au           | 557.3       | 553.9       | 554.9       | 545.8       | 563.6       | 557.9       | 538.0       | 540.4       | 534.2       | 535.0       | 530.6       | 526.3       | 2.3        |
| lr           | 523.3       | 522.9       | 533.4       | 526.4       | 539.6       | 530.2       | 514.3       | 515.4       | 512.4       | 518.1       | 506.3       | 503.0       | 2.1        |
| Os           | 428.0       | 419.7       | 422.2       | 425.5       | 431.5       | 423.9       | 481.9       | 479.2       | 494.4       | 477.8       | 474.7       | 497.4       | 7.0        |
| Pd           | 535.4       | 525.2       | 529.0       | 518.5       | 528.4       | 528.0       | 517.0       | 520.3       | 521.0       | 517.3       | 513.7       | 504.1       | 1.6        |
| Pt           | 529.2       | 532.1       | 528.0       | 528.8       | 536.6       | 530.5       | 529.4       | 524.4       | 523.9       | 528.3       | 516.5       | 514.2       | 1.2        |
| Rh           | 536.3       | 533.6       | 536.2       | 528.5       | 539.3       | 541.9       | 516.4       | 514.5       | 511.8       | 509.3       | 508.4       | 493.6       | 3.0        |
| Ru           | 535.5       | 542.1       | 528.1       | 529.7       | 544.8       | 535.0       | 530.8       | 542.1       | 539.0       | 544.9       | 525.4       | 517.9       | 1.6        |
| Se           | 844.2       | 854.0       | 850.1       | 839.4       | 847.9       | 851.3       | 826.4       | 842.2       | 840.0       | 834.7       | 827.1       | 821.9       | 1.3        |
| TI           | 42.0        | 42.0        | 41.6        | 41.1        | 42.7        | 42.5        | 41.6        | 41.9        | 42.2        | 42.0        | 39.4        | 40.2        | 2.3        |
| Ва           | 7393        | 7513        | 7354        | 7310        | 7347        | 7366        | 7175        | 7171        | 7105        | 7212        | 7139        | 7123        | 1.8        |
| Cr           | 57530       | 58330       | 56770       | 56180       | 55890       | 55940       | 58390       | 57730       | 56890       | 57970       | 57190       | 57060       | 1.5        |
| Cu           | 15680       | 15960       | 15550       | 15400       | 15530       | 15450       | 15690       | 15600       | 15400       | 15700       | 15350       | 15330       | 1.2        |
| Li           | 2869        | 2897        | 2834        | 2788        | 2794        | 2821        | 2851        | 2824        | 2802        | 2874        | 2811        | 2828        | 1.2        |

| Ele-<br>ment | Spike<br>1a | Spike<br>2a | Spike<br>3a | Spike<br>4a | Spike<br>5a | Spike<br>6a | Spike<br>1b | Spike<br>2b | Spike<br>3b | Spike<br>4b | Spike<br>5b | Spike<br>6b | RSD /<br>% |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|
| Mo           | 15950       | 16120       | 15820       | 15620       | 15640       | 15350       | 15250       | 15540       | 15370       | 15940       | 15690       | 15560       | 1.7        |
| Sb           | 6206        | 6351        | 6132        | 6202        | 6157        | 6185        | 6386        | 6289        | 6201        | 6435        | 6308        | 6204        | 1.5        |
| Sn           | 31170       | 31350       | 30410       | 30160       | 30150       | 30100       | 31360       | 30950       | 30740       | 31250       | 30620       | 30740       | 1.5        |

The criterion of 25% RSD in terms of ruggedness is easily achieved with the PlasmaQuant 9100 Elite, as precision values of less than 3% were achieved for the spiked folic acid samples. These results over two non-consecutive days illustrate the robustness and reliability of the method. A considerable deviation from the excellent RSD values is observed for the elements silver and osmium. Comparatively high RSD values of 13% and 7% are due to insufficient stabilization of these elements throughout the sample preparation process. Osmium requires hydrochloric acid in order to be stable throughout the digestion, the dilution and the storage of the obtained solutions. On the other hand silver may form precipitates of silver chloride in the presence of hydrochloric acid, which is then not fully available within the measurement solution. Additionally the respective standards are made up in different acidic mixtures. A mixture of the different stock standard solutions may also cause instability of elements like osmium and silver in the measurement solution. It has to be stated that the RSD values are still well within the required limits of 25%, even with the approach of running all 24 elements from one combined multi-element stock solution. Improved results can be obtained with separate, acid specific sample preparations.

## Specificity

The definition of specificity within USP <233> is that the established method must be able to unequivocally assess each target element in the presence of components that may be expected to be present, including other target elements and matrix components. Further definition and means to determine specificity is given in USP chapter 1225<sup>[4]</sup>. Here, specificity is defined to serve the purpose of: "ensuring that all of the analytical procedures performed allow an accurate statement of the content of impurities of an analyte."<sup>[4]</sup> Hence it has to be validated, that the obtained results are interference-free and no false-positive or false-negative results are obtained. The proposed determination of specificity for impurity procedures is: "by spiking the drug substance or product with appropriate levels of impurities and demonstrating that these impurities are determined with appropriate accuracy and precision."<sup>[4]</sup> Within this study the validation for specificity was undertaken by measuring the unspiked sample and two spiked samples with different levels of spiked target elements at 0.8 J and 1.0 J. Figure 3 depicts the obtained results normalized to the respective J-value of each impurity. For each analyte, the spikes show a distinctive increase in signal in comparison to the unspiked sample. Also, the 1 J spike shows a significantly greater signal in comparison to the

0.8 J spike. Both spike recoveries fulfill the requirements of the above described Accuracy and Repeatability tests and therefore prove that each target element is assessed unequivocally.



Figure 3: Results of specificity test 0.8 J and 1.0 J spike recoveries normalized to respective J-value; for unspiked samples the LOQ is displayed since none of the target elements was found in the test specimen

Further confidence in the accuracy of the results is obtained by the high-resolution spectra of the PlasmaQuant 9100 Elite. Figure 4 displays a spectral overlay of the unspiked sample and the two respective spikes at 0.8 J and 1.0 J for three target elements (cadmium, mercury and platinum). It can be seen that these peaks clearly gain in signal intensity with increasing target element concentration and that the peaks are clearly separated from any adjacent peak that might interfere and cause a false-positive result.



Figure 4: High resolution spectral overlay of Cd, Pt and Hg; blue – blank, red - sample, green – 0.8J spike, black – 1.0 J spike

### Limits of quantification and sensitivity

Low limits of quantification (LOQ) are particularly important for some of the potentially toxic trace elements defined in USP <232>, notably arsenic, cadmium, mercury and lead. The LOQ for each target element is reported in Table 9. The LOQs were measured under routine laboratory conditions and are well below the target limits of each target element. The LOQ is based on the measurement of 11 blank solutions measured on two non-consecutive days and is defined as 10 times the standard deviation of the 11 blank measurements.

Table 9: Comparison of Limits of Quantification (LOQ) and J-values

| Element | Line<br>[nm] | LOQ<br>[µg/L] | J-value<br>[µg/L] |
|---------|--------------|---------------|-------------------|
| As      | 188.979      | 6.2           | 75                |
| Cd      | 214.441      | 0.3           | 25                |
| Hg      | 184.886      | 3.8           | 150               |
| Pb      | 220.353      | 2.1           | 25                |
| Со      | 237.863      | 1.6           | 250               |
| Ni      | 231.604      | 1.1           | 1000              |
| V       | 292.464      | 0.9           | 500               |
| Ag      | 328.068      | 1.6           | 750               |
| Au      | 242.795      | 1.2           | 500               |
| lr      | 212.681      | 3.2           | 500               |
| Os      | 442.047      | 76.0          | 500               |
| Pd      | 340.458      | 2.7           | 500               |
| Pt      | 214.424      | 7.8           | 500               |
| Rh      | 369.236      | 15.0          | 500               |
| Ru      | 240.272      | 2.3           | 500               |

| Element | Line<br>[nm] | LOQ<br>[µg/L] | J-value<br>[µg/L] |
|---------|--------------|---------------|-------------------|
| Se      | 196.028      | 11.4          | 750               |
| TI      | 190.796      | 8.8           | 40                |
| Ва      | 455.403      | 0.3           | 7000              |
| Cr      | 205.552      | 5.4           | 55000             |
| Cu      | 324.754      | 2.9           | 15000             |
| Li      | 670.791      | 2.5           | 2750              |
| Mo      | 202.030      | 8.2           | 15000             |
| Sb      | 217.581      | 10.0          | 6000              |
| Sn      | 189.927      | 7.1           | 30000             |

## Conclusion

This application note shows a simple and effective method for routine preparation and analysis of pharmaceutical materials by ICP-OES in combination with closed vessel microwave digestion. The analysis of elemental impurities in pharmaceutical products by ICP spectrochemical techniques represents a routine task in QC labs of drug manufacturers and suppliers of materials involved in the manufacturing and handling process of these products. Each developed method to investigate such elemental impurities needs to be validated according to the guidelines and regulations of the International Conference on Harmonization (ICH) and the United States Pharmacopeia (USP).

The major challenges for this application include: varying sample types in terms of matrix composition, varying matrix loading, drug specific target limits and analyte combinations, the possibility of spectral interferences, as well as the requirement of analyzing elements over a large concentration range (low  $\mu$ g/L to high mg/L) in a single run. The PlasmaQuant 9100 Elite successfully meets all of these challenges and is well suited for the determination of elemental impurities in pharmaceutical materials by its ability to easily meet the target values and performance criteria as defined in the ICH Guideline and USP Chapter <232>.

The High-Frequency Generator in combination with the unique V-Shuttle torch allows for the measurement of almost any sample type including undiluted solvents and high matrix samples, which gives the operating laboratory great flexibility for the analysis for pharmaceutical applications. At the same time, spectral interferences are resolved easily by the high-resolution optical system (2 pm @ 200 nm) ensuring high accuracy of the obtained results as well as high confidence in the developed methodology.

The challenge of large differences in target values, for example, if Class 1 elements are to be analyzed together with Class 3 elements (mandatory for parenteral or inhalation products), is successfully addressed by the DualView Plus feature of the PlasmaQuant 9100 Elite. Besides the common radial and axial plasma observation modes it offers axial plus and radial plus, which attenuates the signal in the respective observation mode. The here described method uses radial plus plasma observation to measure the high levels of barium, lithium and chromium alongside the trace levels of all Class 1 elements in a single measurement run. Running several dilutions to cover the entire concentration range is therefore avoided. The high spectral resolution and sensitivity of the PlasmaQuant 9100 Elite by Analytik Jena offers new analytical potential.

#### References

- <sup>1</sup> General Chapter <232> Elemental Impurities–Limits, USP39. Publishing in Pharmacopeial Forum 42(2) [Mar.–Apr. 2016]
- <sup>2</sup> General Chapter <233> Elemental Impurities–Procedures, Second Supplement to USP 38–NF 33, 2015
- <sup>3</sup> International Conference on Harmonization, ICH Q3D Step 4 Guideline for Elemental Impurities (ICH, Geneva, Switzerland, 2014)
- <sup>4</sup> General Chapter <1225> Validation of compendial procedures, First Supplement to USP 40–NF 35

This document is true and correct at the time of publication; the information within is subject to change. Other documents may supersede this document, including technical modifications and corrections.

### Headquarters

Analytik Jena GmbH Konrad-Zuse-Strasse 1 07745 Jena · Germany Phone +49 3641 77 70 Fax +49 3641 77 9279 info@analytik-jena.com www.analytik-jena.com Version 1.0 | Author: SeWu en · 12/2020 © Analytik Jena GmbH | Pictures ©: p1 Istock/MilosJokic